Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Угловая скорость и угловое ускорение. Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени Dt зададим углом Dj. Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора djравен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта(рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторамиили акси­альными векторами.Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Угловой скоростьюназывается вектор­ная величина, равная первой производной угла поворота тела по времени:

Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор dj (рис. 7). Размерность угловой скорости dimw=T-1, a . ее единица — радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

, а направление совпадает с направлением поступательного движения правого винта при его вращении от w к R.

Если w=const, то вращение равномер­ное и его можно характеризовать перио­дом вращенияТ — временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2p. Так как промежутку времени Dt=T соответствует Dj=2p, то w= 2p/Т, откуда

 

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

Угловым ускорениемназывается век­торная величина, равная первой производ­ной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор

 

 

e сонаправлен вектору w (рис.8), при замедленном.— противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение аt, нор­мальное ускорение аn) и угловыми величи­нами (угол поворота j, угловая скорость (о, угловое ускорение e) выражается сле­дующими формулами:

В случае равнопеременного движения точки по окружности (e=const)

где w0 — начальная угловая скорость.

 




©2015 studenchik.ru Все права принадлежат авторам размещенных материалов.