Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Рекурсивный (волновой) алгоритм



Английское название рекурсивного сжатия — wavelet. На русский оно также переводится как волновое сжатие, и как сжатие с использованием всплесков. Этот вид архивации известен довольно давно и напрямую исходит из идеи использования когерентности областей. Ориентирован алгоритм на цветные и черно-белые изображения с плавными переходами. Идеален для картинок типа рентгеновских снимков. Коэффициент сжатия задается и варьируется в пределах 5-100 раз. При попытке задать больший коэффициент, на резких границах, особенно проходящих по диагонали, проявляется “лестничный эффект” — ступеньки разной яркости, размером в несколько пикселов.

Идея алгоритма заключается в том, что мы сохраняем в файл разницу число между средними значениями соседних блоков в изображении, которая обычно принимает значения близкие к 0.

Так два числа a2i и a2i+1 всегда можно представить в виде b1i=(a2i+a2i+1)/2 и b2i=(a2i-a2i+1)/2. Аналогично последовательность ai может быть попарно переведена в последовательность b1,2i.

Разберем конкретный пример: пусть мы сжимаем строку из 8 значений яркости пикселов (ai): (220, 211, 212, 218, 217, 214, 210, 202). Мы получим следующие последовательности b1i, и b2i: (215.5, 215, 215.5, 206) и (4.5, -3, 0.5, 4). Заметим, что значения b2i достаточно близки к 0. Повторим операцию, рассматривая b1i как ai. Данное действие выполняется как бы рекурсивно, откуда и название алгоритма. Мы получим из (215.5, 215, 215.5, 206): (215.25, 210.75) (0.25, 4.75). Полученные коэффициенты, округлив до целых и сжав, например, с помощью алгоритма Хаффмана с фиксированными таблицами, мы можем поместить в файл.

Заметим, что мы применяли наше преобразование к цепочке только два раза. Реально мы можем позволить себе применение wavelet- преобразования 4-6 раз. Более того, дополнительное сжатие можно получить, используя таблицы алгоритма Хаффмана с неравномерным шагом (т.е. нам придется сохранять код Хаффмана для ближайшего в таблице значения). Эти приемы позволяют достичь заметных коэффициентов сжатия.

Упражнение: Мы восстановили из файла цепочку (215, 211) (0, 5) (6, -3, 1, 4) (см. пример). Постройте строку из восьми значений яркости пикселов, которую воссоздаст алгоритм волнового сжатия.

Алгоритм для двумерных данных реализуется аналогично. Если у нас есть квадрат из 4 точек с яркостями a2i,2j, a2i+1, 2j, a2i, 2j+1, и a2i+1, 2j+1, то

 

 
 

 

 


Исходное

      B1     B2    
изображение       B3       B4    

 

Используя эти формулы, мы для изображения 512х512 пикселов получим после первого преобразования 4 матрицы размером 256х256 элементов:

 

 

 

В первой, как легко догадаться, будет храниться уменьшенная копия изображения. Во второй — усредненные разности пар значений пикселов по горизонтали. В третьей — усредненные разности пар значений пикселов по вертикали. В четвертой — усредненные разности значений пикселов по диагонали. По аналогии с двумерным случаем, мы можем повторить наше преобразование и получить вместо первой матрицы 4 матрицы размером 128х128. Повторив наше преобразование в третий раз, мы получим в итоге: 4 матрицы 64х64, 3 матрицы 128х128 и 3 матрицы 256х256. На практике, при записи в файл, значениями, получаемыми в последней строке ( ), обычно пренебрегают (сразу получая выигрыш примерно на треть размера файла — 1- 1/4 - 1/16 - 1/64...).

К достоинствам этого алгоритма можно отнести то, что он очень легко позволяет реализовать возможность постепенного “проявления” изображения при передаче изображения по сети. Кроме того, поскольку в начале изображения мы фактически храним его уменьшенную копию, что упрощает показ “огрубленного” изображения по заголовку.

В отличие от JPEG и фрактального алгоритма данный метод не оперирует блоками, например, 8х8 пикселов. Точнее мы оперируем блоками 2х2, 4х4, 8х8 и т.д. Однако за счет того, что коэффициенты для этих блоков мы сохраняем независимо, мы можем достаточно легко избежать дробления изображения на “мозаичные” квадраты.

Заключение

В заключение рассмотрим таблицы, в которых сводятся воедино параметры различных алгоритмов сжатия изображений, рассмотренных нами выше.

Алгоритм Особенности изображения, за счет которых происходит сжатие
RLE Подряд идущие одинаковые цвета: 2 2 2 2 2 2 2 15 15 15
LZW Одинаковые подцепочки: 2 3 15 40 2 3 15 40
Хаффмана Разная частота появления цвета: 2 2 3 2 2 4 3 2 2 2 4
CCITT-3 Преобладание белого цвета в изображении, большие области, заполненные одним цветом
Рекурсивный Плавные переходы цветов и отсутствие резких границ
JPEG Отсутствие резких границ
Фрактальный Подобие между элементами изображения

 

 

Алгоритм К-ты сжатия Симметрич­ность по времени На что ориенти­рован Поте­ри Раз­мер­ность
RLE 32, 2, 0.5 3,4-х битные Нет 1D
LZW 1000, 4, 5/7 1.2-3 1-8 битные Нет 1D
Хаффмана 8, 1.5, 1 1-1.5 8 битные Нет 1D
CCITT-3 213(3), 5, 0.25 ~1 1-битные Нет 1D
JBIG 2-30 раз ~1 1-битные Нет 2D
Lossless JPEG 2 раза ~1 24-бит. сер. Нет 2D
Рекурсивное сжатие 2-200 раз 1.5 24-битные, серые Да 2D
JPEG 2-200 раз ~1 24-битные, сер. Да 2D
Фрактальный 2-2000 раз 1000-10000 24-бит. сер. Да 2.5D

 

В приведенной таблице отчетливо видны тенденции развития алгоритмов графики последних лет:

1) ориентация на фотореалистичные изображения с 16 миллионами цветов (24 бита);

2) использование сжатия с потерями, возможность за счет потерь регулировать качество изображений;

3) использование избыточности изображений в двух измерениях;

4) появление существенно несимметричных алгоритмов;

5) увеличивающаяся степень сжатия изображений.

Контрольные вопросы к разделу

1) В чем разница между алгоритмами с потерей информации и без потери информации?

2) Приведите примеры мер потери информации и опишите их недостатки.

3) За счет чего сжимает изображения алгоритм JPEG?

4) В чем заключается идея фрактального алгоритма компрессии?

5) В чем заключается идея рекурсивного (волнового) сжатия?

6) Можно ли применять прием перевода в другое цветовое пространство алгоритма JPEG в других алгоритмах компрессии?

7) Сравните приведенные в этой главе алгоритмы сжатия изображений.

8)





©2015 studenchik.ru Все права принадлежат авторам размещенных материалов.